Utilizing the Structure and Data Information for XML Document Clustering
نویسندگان
چکیده
This paper reports on the experiments and results of a clustering approach used in the INEX 2008 Document Mining Challenge. The clustering approach utilizes both the structure and the content information of the XML documents in the Wikipedia collection. The content of the XML documents is measured using the latent semantic kernel (LSK). A well-known problem with the construction of latent semantic kernel is the use of singular vector decomposition (SVD) method on a large feature space which is extremely expensive, in terms of computational as well as of memory requirements. Therefore a dimensional reduction method based on the common structural information of the XML documents is applied to reduce the dimension of the document space for building the latent semantic kernel. After the kernel is constructed, the proposed clustering approach uses the kernel to measure the similarity between each pair of document contents in the dataset. The proposed clustering approach has shown to be effective on the Wikipedia dataset.
منابع مشابه
خوشهبندی فراابتکاری اسناد فارسی اِکساِماِل مبتنی بر شباهت ساختاری و محتوایی
Due to the increasing number of documents, XML, effectively organize these documents in order to retrieve useful information from them is essential. A possible solution is performed on the clustering of XML documents in order to discover knowledge. Clustering XML documents is a key issue of how to measure the similarity between XML documents. Conventional clustering of text documents using a do...
متن کاملApply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML
As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...
متن کاملApply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML
As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملXML Documents Clustering based on Representative Path
XML is increasingly important in data exchange and information management. A large amount of efforts have been spent in developing efficient techniques for accessing, querying, and storing XML documents. In this paper, we propose a new method to cluster XML documents efficiently. A new prepresentative path called a virtul path which can represent both the structure and the contents of a XML doc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008